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Abstract: 

Constrained optimization problems with multivariate polynomial objective functions provide a 

useful framework for addressing several problem types in engineering. For the purpose of 

constrained global optimization of multivariate polynomial functions, we offer techniques based 

on the polynomial B-spline form. Using a bound-and-prune structure, the proposed algorithms 

are developed. The suggested fundamental constrained global optimization algorithms were put 

to the test using test issues drawn from the field of systems analysis. The findings are consistent 

with what has been published. 
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I. INTRODUCTION 

The primary issue in system analysis is determining the minimal distance to the surface that is 

determined by the polynomial constraint f(x) = 0. It is possible to frame it as a problem of 

constrained optimization.  

ρ∗ = minz∈Rn‖z‖2
2 

 s.t. f(z) = 0. 

 

The majority of approaches found in works for addressing the minimal distance problem rely 

on the utilization of linear matrix inequality techniques. [1][2]. These methods needs the correct 

homogeneous form of the polynomials.  In general, the challenge of determining the minimal 

distance may be formulated as a constrained global optimization task within the realm of 

nonconvex programming problems. In this field of research concerned with identifying the 

optimal value, or the best possible outcome, for a given problem. The problem of constrained 

global optimization for non-linear programming (NLP) can be formulated as follows: 
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min
z ∈ 𝐳

f(z) 

                                                      s.t. cp(z) ≤ 0, p = 1,2, . . . , n                                          (1) 

         ceqq(z) = 0, q = 1,2, . . . , m 

 

     The branch-and-bound framework is a widely employed approach for addressing global 

optimization problems with constraints [3]. For example, some interval approaches [4][5] employ 

this framework in order to ascertain the global minimum of a particular non-linear programming 

problem (NLP). This study shows new ways to use B-splines to solve constrained multivariate 

optimization problems in the field of systems that are not convex and are not linear. The proposed 

approach focuses on optimizing objective functions and satisfying constraints that are only 

represented by polynomial functions. By transforming the power-form polynomial objective 

function and constraints into a polynomial B-spline form [6], [7], we can improve our search 

results.  The coefficients of B-spline expansion then establish a minimum and maximum bound 

for the allowed variation in the goal function and restrictions.  

        Within the article, we study one example of the fundamental global optimization under 

constraints. This example include the issue of minimum distance problem. The aforementioned 

issues are simplified down to the form of a quadratic optimization problem that include 

multivariate polynomials, and then the suggested technique for constrained global optimization 

is applied to find a solution. 

                 The benefits of the suggested strategy are: (i) it doesn't need to evaluate f and 

constraints (ci & ceqj
); (ii) it doesn't need an initial guess to kick off optimization; (iii) it ensures 

that the local minimum will be located within an accuracy threshold set by the user; and (iv) it 

doesn't need prior knowledge of stationary points.  

 

II. BACKGROUND: B-SPLINE EXPANSION 

In the first place, we will provide a quick introduction to B-spline expansion. The range of in 

power from polynomial is obtained by using the B-spline expansion. After that, the B-spline 

shape is used as the foundation for the primary zero finding procedure in section 3.     

So as to acquire the B-spline expansion, we follow the approach described in [7] and [6]. 

Consider F(x1, ⋯ xv) represent a multivariate polynomial in v real variables, where the 

polynomial has the largest degree (d1 + ⋯ +dv) (2). 

 

                                              F(x1, ⋯ xv) = ∑ ⋯
d1
p1=0 ∑ cp1⋯pv

x1
p1 ⋯

dv
pv=0 xv

pv . (2) 

 

2.1 Univariate polynomial  

 

Lets consider univariate polynomial case first, (3) 
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 F(x) = ∑ cvtxvd
p=0 , x ∈ [a, b], (3) 

 

 

For a given degree m, this is equivalent to an order of m+1. The B-spline expansion is defined 

on a compact interval I=[a,b],  where the condition m ≥ d holds. The splines with a degree of m 

on a partition of the uniform grid is referred to as the Periodic or Closed knot vector, and it is 

denoted by the letter, 𝐰, and denoted as Ωm(J, 𝐰), and 𝐰 is given as, 

 

                                               𝐰: = {x0 < x1 < ⋯ < xs−1 < xs}. (4) 

 

The value of xj: = a + jz, 0 ≤ j ≤ s, where s denotes number segments of B-spline and z: =

(b − a)/s. 

Let's say that 𝐍q represents the space occupied by splines of degree q. The degree q splines 

with Cq−1 continue on [a, b] and  𝐰 as knot vector is thus designated by the following notation: 

 

 Ωq(I, 𝐰 ): = {Ω ∈ Cq−1(I): Ω|[zj, zj+1] ∈ 𝐍q,  j = 0, ⋯ , s − 1}. (5) 

 

Since Ω𝑞(𝐼, 𝒘) is (𝑠 + 𝑞) dimension linear space [8]. To provide a foundation for locally 

supported splines, Ω𝑞(𝐼, 𝒘) , we required some extra knots 𝑧−𝑞 ≤ ⋯ ≤ 𝑧−1 ≤ 𝑎 and 𝑏 ≤ 𝑧𝑠+1 ≤

⋯ ≤ 𝑧𝑠+𝑞 clamed at the ends of knot vector which are called as Clamped knot vectors, (6). 

Elements of Open or Clamped knot vector 𝒘 is obtained as 𝑧𝑗: = 𝑎 + 𝑗𝑢, 

 

 𝒘: = {𝑧−𝑞 ≤ ⋯ ≤ 𝑧−1 ≤ 𝑎 = 𝑧0 < 𝑧1 < ⋯ < 𝑧𝑠−1 < 𝑏 = 𝑧𝑠 ≤ 𝑧𝑠+1 ≤ ⋯ ≤ 𝑧𝑠+𝑞}. (6) 

 

The B-spline basis {𝐵𝑗
𝑞(𝑧)}

𝑗=1

𝑠−1
of Ω𝑞(𝐼, 𝒘) is defined in terms of divided differences: 

 

 𝐵𝑗
𝑞(𝑧): = (𝑧𝑗+𝑞 − 𝑧𝑗)[𝑧𝑗 , 𝑧𝑗+1, ⋯ , 𝑧𝑗+𝑞+1](. −𝑧)+

𝑞 , (7) 

 

where (. )+
𝑞

 represent degree truncation. This can be simply shown as 

 

                                         𝐵𝑗
𝑞(𝑧): = 𝛺𝑑 (

𝑧−𝑎

ℎ
− 𝑖) , −𝑞 ≤ 𝑗 ≤ 𝑠 − 1, (8) 

 

where 
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∆𝑞(𝑧): =
1

𝑞!
∑(−1)𝑖

𝑞+1

𝑖=0

(
𝑞 + 1

𝑣
) (𝑧 − 𝑣)+

𝑞 , 

    (9) 

 

𝐵𝑗
𝑞(𝑧): = (𝑧𝑗+𝑞 − 𝑧𝑗)[𝑧𝑗 , 𝑧𝑗+1, ⋯ , 𝑧𝑗+𝑞+1](. −𝑧)+

𝑞 , is degree 𝑞 basis function. The expression 

for basis in B-spline form is facilitated by following Cox-deBoor recursion formula, 

 

                             𝐵𝑗
𝑞(𝑧): = 𝛽𝑗,𝑞(𝑧)𝐵𝑗

𝑞−1(𝑧) + (1 − 𝛽𝑗+1,𝑞(𝑧)) 𝐵𝑗+1
𝑞−1(𝑧),  𝑞 ≥ 1, (10) 

 

where  

 𝛽𝑗,𝑞(𝑧) = {

𝑧−𝑥𝑗

𝑧𝑗+𝑞−𝑧𝑗
,     if  𝑧𝑗 ≤ 𝑧𝑗+𝑞 ,

0,     otherwise,
 (11) 

and 

 

                                             𝐵𝑗
0(𝑧): = {

1,     if  𝑧 ∈ [𝑧𝑗 , 𝑧𝑗+1),

0,     otherwise.
 (12) 

 

The spline basis set {𝐵𝑗
𝑞(𝑧)}

𝑗=1

𝑠−1
 has the following desirable characteristics: 

1. Every 𝐵𝑗
𝑞(𝑧) is greater than zero on  [𝑧𝑗 , 𝑧𝑗+𝑞+1]. 

2. The spline basis set {𝐵𝑗
𝑞(𝑧)}

𝑗=1

𝑠−1
  shows a partition of unity, i.e. 

∑ 𝐵𝑗
𝑞(𝑧)

𝑣−1

𝑗=1

= 1. 

 The following relation may be used to express the {𝑧𝑙}𝑙=0
𝑚  in (3) in terms of B-spline. 

 

                                              

𝑧𝑙: = ∑ 𝜋𝑟
(𝑙)

𝑣−1

𝑟=−𝑞

𝐵𝑟
𝑞(𝑧), 𝑙 = 0, ⋯ , 𝑞, 

  (13) 

 

and the symmetric polynomial 𝜋𝑟
(𝑙)

 defined as 

 

                                       𝜋𝑟
(𝑙)

: =
Sym𝑠(𝑟+1,⋯,𝑟+𝑞)

𝑠𝑙(
𝑞
𝑙

)
,  𝑙 = 0, ⋯ , 𝑞. (14) 

Then by substituting (13) in (3) we get the power form polynomial (3)'s B-spline extension 

as follows: 
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𝐹(𝑧): = ∑ 𝑐𝑝

𝑚

𝑝=0

∑ 𝜋𝑟
(𝑙)

𝑣−1

𝑟=−𝑞

𝐵𝑟
𝑞(𝑧) = ∑ [∑ 𝑐𝑝𝜋𝑟

(𝑙)

𝑚

𝑝=0

]

𝑣−1

𝑟=−𝑞

𝐵𝑟
𝑞(𝑧) = ∑ 𝐷𝑛

𝑠−1

𝑟=−𝑞

𝐵𝑟 
𝑞(𝑧), 

  (15) 

 

where   

 

                                                     

𝐷𝑛: = ∑ 𝑐𝑝𝜋𝑟
(𝑙)

𝑚

𝑝=0

. 

  (16) 

 

 

2.2 Multivariate polynomial case 

Let us now investigate B-spline form of following power form polynomial in a number of 

variables (17),  

                                        

𝑃(𝑧1, ⋯ , 𝑧𝑣): = ∑ ⋯

𝑘1

𝑔1=0

∑ 𝑐𝑔1⋯𝑔𝑣
𝑧1

𝑘1 ⋯

𝑘𝑣

𝑔𝑣=0

𝑧𝑣
𝑘𝑣 = ∑ 𝑎𝒈

𝒈≤𝒌

𝑧𝒌, 

  (17) 

 

      where 𝒈: = (𝑔1, ⋯ , 𝑔𝑣) and 𝒌: = (𝑘1, ⋯ , 𝑘𝑣). Substituting (13) for each 𝑧𝑘, (17) may 

also be expressed as 

                           

𝐹(𝑧1, 𝑧2, . . . , 𝑧𝑣) = ∑ . . . ∑ 𝑐𝑙1...𝑙𝑣
∑ 𝜋𝑢1

(𝑙1)
𝐵𝑢1

𝑞1(𝑧1)

𝑘1−1

𝑢1=−𝑞1

𝑚𝑣

𝑙𝑣=0

𝑚1

𝑙1=0

 . . . ∑ 𝜋𝑢𝑣

(𝑙𝑣)
𝐵𝑢𝑣

𝑞𝑣(𝑧𝑣)

𝑘𝑣−1

𝑢𝑣=−𝑞𝑣

, 

  

                                            

= ∑ .

𝑘1−1

𝑢1=−𝑞1

. . ∑ ( ∑ . . .

𝑚1

𝑙1=0

∑ 𝑐𝑙1...𝑙𝑣
𝜋𝑢1

(𝑙1)
. . . .

𝑚𝑣

𝑙𝑣=0

𝜋𝑢𝑣

(𝑙𝑣)
)

𝑘𝑣−1

𝑢𝑣=−𝑞𝑣

𝐵𝑢1

𝑞1(𝑧1). . . 𝐵𝑢𝑣

𝑞𝑣(𝑧𝑣), 

  (18) 

                                            

= ∑ . . . ∑ 𝐷𝑢1...𝑢𝑣

𝑘𝑣−1

𝑢𝑣=−𝑞𝑣

𝑘1−1

𝑢1=−𝑞1

𝐵𝑢1

𝑞1(𝑧1). . . 𝐵𝑢𝑣

𝑞𝑣(𝑧𝑣), 
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     we can write (18) as 

 

                                                        

𝐹(𝑧): = ∑ 𝐷𝑢

𝑢≤𝑘

𝐵𝑢
𝑘(𝑧). 

  (19) 

 

     where 𝑢: = (𝑢1, ⋯ , 𝑢𝑣) and 𝐷𝑢 is B-spline coefficient given as 

 

                                                  

𝐷𝑢1...𝑢𝑣
= ∑ . . .

𝑚1

𝑙1=0

∑ 𝑐𝑙1...𝑙𝑣
𝜋𝑢1

(𝑙1)
. . . .

𝑚𝑣

𝑙𝑣=0

𝜋𝑢𝑣

(𝑙𝑣)
. 

  (20)  

 

Equation (18) gives B-spline expansion of equation (17). A polynomial derivative in a specific 

direction may be determined by using the values of 𝐷𝑢, these are the coefficients of the equation 

(18) for 𝒚 ⊆ 𝐼. The derivative of  𝐹(𝑥) in direction 𝑥𝑟 is represented by equation (21). 

          

                         

𝐹𝑟
′(𝒚) =

𝑚𝑟

𝒘𝑠+𝑚𝑟+1 − 𝒘𝑠+1
× ∑ [𝐷𝒔𝑟,1

(𝒚) − 𝐷𝑠(𝒚)]𝐵𝒎𝑟,−1,𝒔(𝑥),

𝐼≤𝒎𝑟,−1

 1 ≤ 𝑟 ≤ 𝑣, 𝑥 ∈ 𝒚, 

                                                                                                                                                 (21) 

 

If 𝒘 is a knot vector then partial derivative 𝐹𝑟
′(𝒚) gives the bound of the range enclosure for the 

derivative of 𝐹 with respect to 𝒚. In their work, Lin and Rokne proposed (14) for symmetric 

polynomials, using a closed or periodic knot vector.  As a result of the modification in the knot 

vector from (4) to (6), we suggest a revised formulation of (14) in the subsequent manner,         

 

                                            𝜋𝑢
(𝑙)

: =
Sym𝑣(𝑢+1,⋯,𝑢+𝑞)

(
𝑞
𝑙

)
. (22) 

 

2.3 B-spline range enclosure property  

 

                                                  

𝐹(𝑧): = ∑ 𝐷𝑖𝐵𝑖
𝑞

𝑚

𝑖=1

(𝑧), 𝑧 ∈ 𝒚. 

  (23) 
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   Consider the B-spline expansion (23) representing the polynomial 𝑔(𝑡) in power form. Let 

𝑔̄(𝒚) indicate the range of 𝑔(𝑡) on subbox 𝒚. The array 𝐷(𝒚) consists B-spline coefficients. Then 

for 𝐷(𝒚) it holds 

 

                                          𝑔̄(𝒚) ⊆ 𝐷(𝒚) = [𝑚𝑖𝑛 𝐷 (𝒚), 𝑚𝑎𝑥 𝐷 (𝒚)]. (24) 

 

The interval formed by the lowest and maximum values of B-spline coefficients gives bound for 

the range of equation (17) 𝑔 on 𝒚. 

 

2.4 Domain division procedure 

The enclosure of range achieved by B-spline expansion may be enhanced by using the technique 

of domain division of subbox 𝒚. Let  

 

                                   𝒚: = [𝒚̱1, 𝒚̄1] × ⋯ × [𝒚̱𝑟 , 𝒚̄𝑟] × ⋯ × [𝒚̱𝑣, 𝒚̄𝑣], 

 

the box that has to be consider for domain subdivison in the 𝑟th direction (1 ≤ 𝑟 ≤ 𝑣). It results 

in two subboxes 𝒚𝑨 and 𝒚𝑩 as follows 

 

                                   𝒚𝑨: = [𝒚̱1, 𝒚̄1] × ⋯ × [𝒚̱𝑟 , 𝑚(𝒚𝑟)] × ⋯ × [𝒚̱𝑣, 𝒚̄𝑣],  

                                   𝒚𝑩: = [𝒚̱1, 𝒚̄1] × ⋯ × [𝑚(𝒚𝑟), 𝒚̄𝑟] × ⋯ × [𝒚̱𝑣, 𝒚̄𝑣], 

  

where 𝑚(𝒚𝑟) is a midpoint of [𝒚𝑟 , 𝒚
𝑟
].

 
 

III. SUMMARY OF THE PROPOSED ALGORITHM 

The underlying B-spline algorithm approach is similar to the one described in [9] for global 

optimization of nonlinear polynomials. This is a summary of the algorithm. 

 

Step 1: The algorithm makes use of the array of polynomial coefficients of the objective 

function, denoted by 𝐴𝑜, as well as the arrays denoting the inequality constraints, denoted by 

𝐴𝑔𝑖
 and the equality constraints, denoted by 𝐴ℎ𝑗

. A cell structure known as 𝐴𝑐 is used to hold 

these arrays of coefficients. 

Step 2:  Consider 𝑁𝑐 comprises degree vectors 𝑁, 𝑁𝑐𝑖
and  𝑁𝑐𝑒𝑞𝑗

, 𝑖 = 0, … , 𝑛. How often a 

certain variable occurs in f and constraints (𝑐𝑖 & 𝑐𝑒𝑞𝑗
)   is represented by the length of the 

corresponding degree vector. 

Step 3: Since the B-spline is having order of the B-spline plus one segments equal, the degree 
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vector is used to calculate the number of segments. The vectors 𝐾𝑜, 𝐾𝑐𝑖
, and 𝐾𝑐𝑒𝑞𝑗

are computed 

as  𝐾 = 𝑁 + 2 using degree vectors 𝑁, 𝑁𝑐𝑖
 and 𝑁𝑐𝑒𝑞𝑗

 and entered in 𝐾𝑐  cell like structure. 

Step 4: Using the proposed method coefficients of B-spline for  f  and constraints 

(𝑐𝑖 & 𝑐𝑒𝑞𝑗
)  on the starting search box 𝒙 are then calculated and kept in the arrays 𝐷𝑜(𝒚), 

𝐷𝑔𝑖
(𝒚) and 𝐷ℎ𝑗

(𝒚), respectively.  

Step 5: We begin by setting current lowest estimate, denoted by 𝑒̃ as largest coefficient of 

polynomial B-spline form of  f  on 𝒙, i.e. 𝑒̃ = 𝑚𝑎𝑥 𝐷𝑜 (𝒚). 

Step 6: The next step is to zero out all of the components of a flag vector designated as 

𝐹: = (𝐹1, … , 𝐹𝑝, 𝐹𝑝+1, … , 𝐹𝑝+𝑞) = (0, … ,0). The efficiency of the method is improved by the 

use of the flag vector F. Consider, 𝑐𝑖 (𝑦) ≤ 0  meets the requirement on 𝑦  belong to the box 

𝒚, i.e. 𝑐𝑖 (𝑦) ≤ 0 for  𝑦 ∈ 𝒚. If such is the case, there is no requirement to verify it once again 

𝑐𝑖(𝑦) ≤ 0 for all other subbox 𝒚0 ⊆ 𝒚. The same can be said about 𝑐𝑒𝑞𝑗
. We make use of flag 

vector in order to manage this information 𝐹 = (𝐹1, … , 𝐹𝑝, , 𝐹𝑝+1, … , 𝐹𝑝+𝑞) where the elements 

of 𝐹𝑓, takes either the value 0 or 1, as will be seen below: 

a) 𝐹𝑓 = 1 In either case if the 𝑓𝑡ℎ, 𝑐𝑖  or 𝑐𝑒𝑞𝑗
 is met.  

b) 𝐹𝑓 = 0 In either case if the 𝑓𝑡ℎ, constraint of 𝑐𝑖  or 𝑐𝑒𝑞𝑗
 is not met. 

Step 7: Consider ℒ as a running list assigned with the item ℒ ←

{𝒚, 𝐷𝑜(𝒚), 𝐷𝑔𝑖
(𝒚), 𝐷ℎ𝑗

(𝒚), 𝐹}, and a list of possible solutions ℒ𝑠𝑜𝑙to the empty list. 

    Step 8: Place items in descending order of (𝑚𝑖𝑛 𝐷𝑜 (𝒚)) order in ℒ.  

Step 9: Start the algorithm. If ℒ has no item to process then implement Step 14. Else select the 

last item from ℒ, represent it as {𝒚, 𝐷𝑜(𝒚), 𝐷𝑔𝑖
(𝒚), 𝐷ℎ𝑗

(𝒚), 𝐹}, and discard it’s entry in ℒ. 

Step 10: Implement speed accelerating algorithm as: the bounds of the function's range 

enclosure is determined by the lowest and maximum B-spline coefficients. Let 𝑒̃  is a current 

lowest estimate, and {𝒚, 𝐷(𝒚)} be the item that is being processed at the moment, in which 

case 𝑒̃ ≤ 𝑚𝑖𝑛 𝐷 (𝒚). Then, the global minimizer cannot be contained by 

{𝒚, 𝐷𝑜(𝒚), 𝐷𝑔𝑖
(𝒚), 𝐷ℎ𝑗

(𝒚), 𝐹}  and must be discard this item if 𝑚𝑖𝑛 𝐷𝑜 (𝒚) > 𝑝 and return to 

Step 9. 

    Step 11: Decision on subdivision. If 

(wid 𝒚) and (𝑚𝑎𝑥 𝐷𝑜 (𝒚) − 𝑚𝑖𝑛 𝐷𝑜 (𝒚)) < 𝜖 

then augment the item {𝒙,min 𝐷0(𝒙)} to ℒ𝑠𝑜𝑙and go to step 9. Else go to Step 12. Here 𝜖 

represents a margin of error. 

Step 12: Domain subdivision results into two sub boxes. Domain subdivision is done in the 

most distant direction of 𝒚 at midpoint.  It results into two subboxes 𝒚1 and 𝒚2 such that 𝒚 =
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𝒚1 ∪ 𝒚2. 

Step 13: For 𝑟 = 1,2 

1. Set 𝐹𝑟: = (𝐹1
𝑟 , … , 𝐹𝑝

𝑟 , 𝐹𝑝+1
𝑟 , … , 𝐹𝑝+𝑞

𝑟 ) = 𝐹 

2. Calculate the objective and constraints polynomial B-spline coefficient arrays on 𝒚𝑟 and 

get range enclosure 𝔻𝑜(𝒚𝑟), 𝔻𝑔𝑖
(𝒚𝑟), and 𝔻ℎ𝑗

(𝒚𝑟) for for  f  and constraints (𝑐𝑖 & 𝑐𝑒𝑞𝑗
).  

3. Consider 𝑒̃𝑙𝑜𝑐𝑎𝑙 = 𝑚𝑖𝑛( 𝔻𝑜(𝒚𝑟)). 

4. If 𝑒̃𝑙𝑜𝑐𝑎𝑙 > 𝑒̃   then go to Step 9. 

5. for 𝑖 = 1, … , 𝑝 if 𝐹𝑖 = 0 then 

a. If 𝔻𝑔𝑖
(𝒃𝑟) > 0 then implement Step 6. 

b. If 𝔻𝑔𝑖
(𝒃𝑟) ≤ 0 then set 𝐹𝑖

𝑟 = 1. 

6. for 𝑗 = 1, … , 𝑞 if 𝐹𝑝+𝑗 = 0 then 

a. If 0 ∉ 𝔻ℎ𝑗
(𝒃𝑟) then implement Step 9. 

b. If 𝔻ℎ𝑗
(𝒃𝑟) ⊆ [−𝜖𝑧𝑒𝑟𝑜, 𝜖𝑧𝑒𝑟𝑜] then set 𝐹𝑝+𝑗

𝑟 = 1. 

7. If 𝐹𝑟 = (1, … ,1) then set 𝑒̃: = 𝑚𝑖𝑛( 𝑒̃, 𝑚𝑎𝑥( 𝔻𝑜(𝒃𝑟))). 

8. Add item {𝒃𝑟 , 𝐷𝑜(𝒃𝑟), 𝐷𝑔𝑖
(𝒃𝑟), 𝐷ℎ𝑗

(𝒃𝑟), 𝐹𝑟} to the list ℒ. 

9. For loop End  

Step 14: Equalize current minimal approximation to the global minimum as, 𝑒̂ = 𝑒̃. 

Step 15: Set all global minimizer(s) 𝒛(𝑖) as the initial entries of items in ℒ𝑠𝑜𝑙 for which 

𝑚𝑖𝑛 𝐷𝑜 (𝒙) = 𝑒̂.   

Step 16: Terminate the algorithm and retrieve the global minimum 𝑒̂ and all minimizers 

𝒛(𝑖)found. 

 

IV. NUMERICAL RESULTS 

The calculations are carried out on a personal computer with an PC having i3-370M, 2.40 GHz 

processor and 6 GB of RAM, while the techniques themselves are performed in MATLAB [10]. 

For the purpose of determining the 𝑒̂ and 𝒛(𝑖),  an accuracy of at least 𝜖 = 10−6 is required. The 

computation time in seconds is reported. This problem is derived from sources [1] and [12]. The 

following state-space system should be taken into consideration. 

 

𝑥̇ = 𝐴(𝑦)𝑥(𝑡), 

 

consider 𝑥 ∈ ℝ𝑛 is the vector representing the state and 𝑦 = (𝑦1, 𝑦2, . . . , 𝑦𝑛)′ ∈ ℝ𝑛 is vector 

denoted as is representative of the uncertain parameters. Considering that A(0) is a Hurwitz 

matrix, The parametric stability margin, denoted as 𝑙2 is defined as 
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𝜌2 = √𝜌∗ = √𝑚𝑖𝑛{𝜌𝑅 , 𝜌𝐼}. 

 

The variable 𝜌𝑅 represents the answer of the optimization problem subject to equality 

constraints. 

𝜌𝑅 = 𝑚𝑖𝑛𝑧∈𝑅𝑛  𝑧1
2 + 𝑧2

2 

 

s.t. 𝑑𝑒𝑡[ 𝐴(𝑧)] = 0, 

 

and 𝜌𝐼 represents the answer to a separate optimization problem that is subject to equality 

constraints. 

 

𝜌𝐼 = 𝑚𝑖𝑛𝑧∈𝑅𝑛  𝑧1
2 + 𝑧2

2, 

 

s.t. 𝐻𝑛−1[𝐴(𝑧)] = 0. 

 

This minimal distance problem transforms into a quadratic optimization problem. Consider i 

𝐴(𝑦) is a polynomial on 𝒚. In the case of the specific illustration given in [12], we have 

 

𝑑𝑒𝑡[ 𝐴(𝑦)] = −3𝑦1
3 − 7𝑦1

2𝑦2 − 2𝑦1𝑦2
2 − 2𝑦2

3 − 4𝑦1
2 + 𝑦2

2 + 2𝑦1 + 2𝑥2 − 1, 

𝐻𝑛−1[A(y)] = −8y1
3 − 4y1y2 − 2y1y2

2 − 28y1
2 + y1y2 − 3y2 − 22y1 − 7y2 + 8, 

𝐲1 = [0,0.5], 𝐲2 = [0,0.5]. 

 

The suggested approach solves the initial constrained optimization issue by locating its global 

minimum as 

ρR = 0.2083, 

 

whereas solving a second constrained optimization problem, it locates its global minimum, 

 

ρI = 0.0664. 

 

Therefore, the smallest possible stability margin on a global scale is 

 

ρ∗ = min{ρR, ρI} = 0.0664, 

 

expressing the parametric stability margin for l2 as 

 

ρ2 = √ρ∗ = 0.2576. 
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The findings presented in this study are consistent with the results published in previous studies 

[1][12]. 

 

V. CONCLUSION 

We proposed a constrained global optimization algorithm to solve the minimum distance 

problem using polynomial B-spline form as an inclusion function to bound the range of nonlinear 

multivariate polynomial function.  The approach solves the issue to the required precision 

without resorting to linearization or relaxation techniques. 
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